
THE PROBLEM OF THE SUDDEN MOVEMENT OF A WEDGE 

V. V. Titarenko UDC 533.6.011 

The problem of the sudden movement of a wedge with a constant velocity in a medium at 
rest is examined. Certain cases of the problem have been investigated in a linear approxi- 
mation in [1--4]. Nonlinear solutions which are valid in the neighborhood of the wave 
boundary of the perturbation domain have also been constructed in [4]. Nonlinear solutions in 
the neighborhood of a wedge nose are constructed below for the symmetric and nonsy~netric 
cases of its low speed motion. The strong qualitative distinction between the isobar fields 
calculated by the linear and nonlinear theories is shown. In the nonsymmetric case it is 
found that additional terms must be inserted in the acoustics expansion and in the expansion 
that is valid in the neighborhood of the wave boundary; their order and form are indicated. 
The mode of movement with the formation of a hanging shock is detected and the intensity is 
computed. Linear and nonlinear analyses of all possible cases of the movement of a concave 
angle are also performed. 

i. Let us examine the sudden movement of an infinite wedge of arbitrary apex angle 2~ = 
~, + ~2 (Fig. I) into an ideal gas at rest at the low constant velocity wo = aoMo (ao is the 
sound speed in the gas, Mo <<i). Let us introduce a polar system of self-similar coordinates 
r, 0, whose origin agrees with the wedge nose; the axis 8 = 0 is opposite to the direction 
of wedge motion, and the dimensionless relative excess pressure P and the velocity potential 
f are: 

r cos 0 = x/(aot), ? sin 0 = gl(aot ), P = Po ( l  -]- 7P) ,  

(I) : a~t/(r ,  0). ( 1 ~  

Here t is the time, p is the pressure, and } is the dimensional velocity potential~ 

The problem of seeking f, P in the perturbation domain OABCDO (Fig. i) and the position 
of its boundary is complicated (the formulation is presented in [4], for instance). 

Let us take the wedge Mach number Mo as the small parameter s of the problem, and let us 
represent f and P in the form of asymptotic series in 

The linear solution for P(*) has the form [4] 

P(*) = sin ~,.l{o x, %(0 -- a,), --%a/2} + sin a2.I{o ~, %(0 -- ~), %(3a/2 -- ~, -- aj}, 
(i~ 3) 

l { a ,  b, c} ~ ( l / a )  a r c tg  {(t - -  a 2) s in  c/I2a cos b - -  ( i  + a 2) cos c]}. ( 1 . 4 )  

Values of the arctangents in (i.4) are taken in the interval (0, v). 

The field of isobars P(x) = const and gradient isolines P~*) = const calculated by means 
of (1.3) for the angles a, = a2 = 37.5 ~ and u, = 60 ~ ~2 = 15 ~ are presented in Fig. la-d 
(the number alongside the lines indicates the value of the constant). Fig. 1 graphically 
demonstrates the qualitative distinction between the fields P, Pr in the symmetric and non- 
symmetric cases and indicates the explicit defects in linear theory in the neighborhood of 
the wave boundary ABCD of the perturbation domain, and in the neighborhood of the wedge nose 
in the nonsymmetric case~ 

2. Let us investigate the flow near the wedge nose. Let us first examine the symmetric 
case. Let r + O, we obtain from the linear solution (1.3) for ~1 = ~2 
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p(1) : ~1" @ ~r r2~" COS 2(Ol @ v2r 4~ COS 4(ol + 0 (r4Z), 

where nl* = ;L (s in a 1 + s in  a~)/2; 

2, = ~/(2zr - -  0% - -  ~2); (ol = ~,(0 - -  a l ) ;  J[u = 21-~z s in  a l  s in  ~,n; ( 2 . 1 )  

~v 2 = 2 -4~ s in  ~1 s in  2~z~. 

Using (2.1) in the equations for the second terms in the expansion (1.2) as r + O, ob- 
tained by the method of the small parameter, we find the expansions of P, f as r + 0 

P = ~ ,  -I-e{~lr 2n cos 20) 1 + ~ r  an cos 4(o 1 + o (r4~')} + 82 {g~l r4~-2 + 

+ g2~r e~-2 + o (reZ-2)} + 0 (ca), g21 = - -  2[~vl/(2~ - -  t)1 ~, 

g22 = --8~2V{r COS 2 ( o l / [ ( 2 i ~ -  t)(4E - -  1)],  

] -:-- t~{~l r ~  COS 2(ol/(2~ - -  t )  + % r  4~ COS 4(ol/(4~ - -  1) + ( 2 . 2 )  

+ o(r 4~') } + e 2 {g2r 4~ + o (r  an) } + O(e3), 

n .  = ~u~, + s2n~, /2  + 0 (s3), g., = a cos 4(ox + v,~/[2 (1 - -  2~)], A - -  eons t .  

According to (2.2), the expansion for P is nonregular [5] for r ~.rc, where r c ~ r exp. 
(i/2-2~). The inner [5] variables and expansions in the neighborhood of the wedge nose, which 

2 2 2 is a stagnation point (according to (2~ the particle velocity is fr + r- f6 = 0 for f = 0), 
we introduce in conformity with (2.2) 

r = O / ( 2 - 2 ~ ) s ,  f = E1/(1--~)~1 (S, O) + $~1~2 (S, O) @- . . . ,  

P = 5I$ 2_ 8 1 / ( 1 - - Z ) A 1  ( 3 ,  0 )  -~- ~ : A  2 (S, 0) @ . . . .  ~'1 = ( t  -1- ;L)/(i - -  ;L). ( 2 .  3) 

S u b s t i t u t i n g  ( 2 . 3 )  i n t o  t h e  e x a c t  e q u a t i o n s  o f  t h e  p r o b l e m ,  we o b t a i n  t h a t  t h e  p a r a m e t e r s  
i n  t h e  n e i g h b o r h o o d  r = 0 a r e  d e t e r m i n e d  i n  t h e  f i r s t  two  a p p r o x i m a t i o n s  f r o m  t h e  s i t u a t i o n s  
o f  t h e  e q u a t i o n s  o f  i n c o m p r e s s i b l e  f l u i d  m o t i o n  

V~%~ = Z~s, f-  Xls/s + %~oo/s ~ = 0, A~ = sx~ , -  Z~ - -  (Z~s + %~o/s2)/2; ( 2 . 4 )  

V2)~2 = 0 ,  5 2 = .SX2 s - -  %2 - -  %1sX2s - -  ](10%20/35" ( 2 . 5 )  

The boundary value problems to determine X~, X~ include (2.4), (2.5), conditions on the 
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Fig. 2 

wedge surface and the line of symmetry 

~o = ~2e = 0 np~ 0 = e~, 0 = ~, O<s<so, so-+co ( 2 . 6 )  

and the condition for merger with the acoustics solutions (1.2), (2.2) which are valid far 
from the nose as s § ~. These latter are obtained by equilibration of the outer expansion of 
f of order O(ea), of the inner expansion of f (2.3) of order 0(~ ~) (in abbreviated form 

(]~)o ) and the inner expansion of f of order O(e %~) of the outer expansion of f (2.2) of 

e 2 g%t 
order O(z a) (in abbreviated form ( ] o ) i ) .  We have here from (2.2) and (2.3) 

a2 ~1  cos 2~%/(2~ - -  1) + ( ] o ) i  = $1/(1--~)~)1S2~% $~l~2s4;g COS ~/0) 1 / ( 4 k -  ~). 

The general solutions for XI, Xa can be obtained by separation of variables, and they 
are presented in [6]. We obtain solutions of the boundary value problems for XI, X=~ that 
satisfy conditions (2.6) and the merger conditions by the general solutions from [6]. It is 
convenient to write the final answers by introducing the plage of a complex variable and 
complex potentials: 

z = se i~ W l ( z  ) = %1(s, O) "-F i~l(s ,  0), We(z  ) = %.z(s, O) + i~2(s, O) (2.7) 

(~, @= are stream functions), They then become 

W~ = ~x ( z e - ~ e ~ ) ~ / ( 2 ~  - -  t) ,  h~ = v~s 2z cos 2~% + g~sa'~-2; 
W~ = ,~ ( S ~ ) ~ V ( 4 ~  - ~), A, = , ~ P  ~o~ 4~o~ + a ~ P  -~. 

(2.8) 

(2.9) 

Computations using (2.3), (2.8) and (2.9) are presented in Fig. 2. The pressure dis- 
tribution p(1) over the surface of a wedge with angles al = a2 = 37.5 ~ moving in air is 
represented in Fig. 2ao From linear theory (curve i) the pressure at the nose is minimal~ 
From nonlinear theory (curves 2-4 correspond to monomial for Mo = 0.I, monomial for Mo = 
0.2, and binomial for Mo = 0.i inner solutions), on the wedge surface there are two minimum 
P points located symmetrically at a short range from the nose, at which there is a local 
maximum P. The nonlinear isobar field P(~) = const, evaluated for e = Mo = 0.i by the 
mononmial inner solution (solid curves in Fig. 2b), differs in principle, from the field 
predicted by linear theory (Fig. la, and the dashed curves in Fig. 2b). 

3o In the case of nonsymmetric wedge motion, we obtain from (1.3) as r § 0 

p a )  ~ ~hr ~ cos m 1 + ~2r ~ cos 2mi + o (r 2~) 

where 

By using 
r § 0 

(3.!) 

~ = --2~-~(sin % -- sin ~) sin (~/2); 

~L2 = 2-2~(s in  ~zl -t- s in  czr s in  )~r~. 

(3.1) in the equations for f(2), p(Z) as r § 0, we find the expansions of f,_ P as 
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P=,~,+s{~qr~ co3 ~o~+~tz r ~'~" cos 2r ( r~)}  -? e ~ {h~r ~-~ -~ h:~r ~ - "  + 

+ o (r ~x-~) } + O (ca), 2ho~ = - -  [~ ,~  / (~ - -  l ) l ~  h ~  = - -  2 ~ , ~ : ~  cos  o~/[(~, - -  

- -  t)  (2~ - -  1)], ] = 8 {~tlr ~ COS ~01/()~ - -  ~) -~- ,tt2r" COS 2~oJ(2~, - -  t)  + 

+ o (r~'~) } -+ ~ {h2r ~'~ + o ( r~)}  + 0 (~) ,  h~ = A~ cos 2 ~  + 

t ~ / [ 2  (1 - -  ~,)], A~ - -  const .  

(3.2) 

According to (3.2), the expansion for P is not regular for r ~.~rH, where rH N g~'(~-~). The 
inner variables and expansions in the neighborhood of r = 0 are introduced in conformity 
with (3.2) 

r = el/(2-Z~s, f = eVc~-x)Xl(s, O) + e~Z~(s, O) + . . . ,  
(3.3) 

P = ~ ,  + e2/(2-~)A I (s, 0) + ~ a 2  (s, 0) + . . . .  ~2 = (2 + ~ ) / ( 2  - -  ~). 

S u b s t i t u t i n g  ( 3 . 3 )  i n  t h e  e x a c t  e q u a t i o n s ,  we o b t a i n  t h e  i n n e r  e q u a t i o n s  ( 2 . 4 )  a n d  ( 2 . 5 ) .  

The domain of unsuitability of the acoustics expansions in the nonsyn~etric case is con- 
siderably greater than in the symmetric case. According to (3.2), Pr and the particle velo- 
city grow without limit as r * 0, which indicates the overflow of gas particles from one 
wedge fact to another (from the upper to the lower in Fig. id). But as is known [7, 8], such 
a process should be accompanied by formation of a vortex which would smooth a sharp edge to 
assure a finite particle velocity. 

The construction of a vortex flow in the neighborhood of the nose can be executed under 
the assumptions [8-11]: i) inviscid flow; 2) the vorticity is concentrated in the vortex 
sheet, a surface of tangential velocity discontinuity starting at the nose and curving into 
a certain spiral (the shape of the spiral is unknown, while the flow outside the sheet is 
potential).* 

In this case the complex flow potential can be represented in the form W~ = W~ + W12, 
where W~z is the potential of the unseparated flow around the nose by the incompressible 
fluid, and W12 is the potential of the sheet. Analogously A~ = AI~ + A~2. 

We find the expressions for W11 and W= by a known method [7, 8]: 

Wll  = bl ( ze - i~ l )  ~, W 2 = b~(ze-~1) 2~, b~, b ~ -  const .  ( 3 , 4 )  

We determine the arbitrary constants bl, b2 as a result of merger with the acoustic solution. 

Let us turn to finding WI=. Let z N = sNexp(ie N) determine the location of a certain 
point of the sheet. Instead of the physical circulation C(r, 8, t) we introduce the di- 
mensionless circulation • e)= C/(a~t) because of self-similarity. The complex potential of 
a point vortex at the point z N and with intensity • can be obtained by a conformal mapping 
of the flow domain on the upper half-plane by using the known solution [i0] for a point 
vortex and taking account of the presence of the wall 

WN = i• Ln [(z ~ -- z~) / (z ~ -- e2~z~) }. (3.5) 

Here and henceforth, the bar above will denote the complex-conjugate. 

Denoting the arclength of the sheet measured from the wedge nose by I we obtain W12 by 
the superposition of point vortices (3.5): 

l 

w12 = Ln -- z jl (3.6) 
0 

The velocity potential of the sheet is • = Re{W12}, and the pressure A12 is found from the 
second equation in (2.4). 

*We neglect the possibility of secondary (etc.) stream separation caused by the main vortex. 
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Finding ~5 and z~ should evidently be done under specific conditions, namely: the Kutta-- 
Zhukovskii conditions of finiteness of the velocity at the wedge nose, the conditions for no 
strong effect on the sheet (equality of the pressures and the particle velocity components 
normal to the sheet on both its sides), and conditions formulated for the total velocity po- 

tential W~ and the pressure At on the wedge surface. 

The solution of this complicated problem can be obtained numerically (a survey of differ- 

ent methods is given in [ii]). 

In this case we are interested in another question, not touched upon earlier~ about the 
agreement between the vortex flow and the flow far from the nose of the wedge~ 

For a fixed inner variable s the limit process e § 0 means that r § 0 according to 
(3.3). Therefore according to (1.2), (3.2), and (3.3). 

~2 2z 2 ~ / ( 2 ~ - -  i). . ~ 2 .  ~ 2  = s 2 / ( 2 - z ) t q s ~  c o s o h / ( ~ ,  - -  1) § e ~ s  cos \:o ]i (3,7) 

For a fixed outer variable s, the limit process g * O, means r § 0 in conformity with 
(3.3). Then according to (3.3), (3.4), and (3.6), as z ~ ~o 

~'2 ~2 

l 

T = ( t /~ )  ,I s )  s i n o l t  d• roll = ~ (0t - -  at) .  
0 

(3~ 

( 3 . 9 )  

Equating the outer (3.7) and inner (3.8) limits, we obtain 

b~ = ~ i ( L  - -  1), b~ = ~ / ( 2 ~  - -  1). (3.10) 

A term which has not merged, which is the asymptotic of the vortex sheet, here remains 
in (3.8). Hence, additional terms taking account of the vortical nature of the flow in the 
neighborhood of the wedge nose must be inserted in the outer expansion of (1.2)~ According 
to (3.8), (3.7) and (3.3), the acoustics expansions should have the form 

/ = ~/(~) + e~2/. + ~2i(~) + o(~2, ~2), 
~'3.11) 

The e q u a t i o n s  f * , p *  a g r e e  o u t w a r d l y  w i t h  t h e  e q u a t i o n s  f o r  f ( 1 )  p ( ~ )  

(1 - -  r ) 1~  + r -~ /*  -[- r-2l~o = O, P*  = rf~ - -  f*.  ( 3 . 1 2 )  

Eliminating f* from the system of equations (3.12) and applying the Busemann-Chaplygin 
transformation o = [i -- (i -- r2)I/=]/r, e = 0, we obtain a Laplace equation for P** Further- 
more, applying conformal mapping, we reduce the boundary value problem to determine P* to a 
Dirichlet problem in the plane o z = o~, 02 = L(0--~I) for a half-ring s I~ oz~ i, 0~ 02~ 

el-+ 0. Evidently P* = 0 for 0 ~ 0 ~ , ~  = I; P~ =0 for e I~2~I, 0~ =0, 03 = ~. According 
to (3.8), (3.3), (3.12), for 03 = el, 0~ 0~, P* = --(L ~ i)Tcos ~i/(e12~). 

The solution of this boundary value problem has the form 

P* = (k q- l )2 -ZT(o  ~ - -  o -7") cos ~1. (3.13) 

The potential f* is found from (3o12). 

4. Let us construct an approximate model of the vortex flow that permits obtaining 
simple analytical formulas to estimate the influence of a vortex on the flow field. 

Let us replace the vortex sheet by a single point vortex (3.5), where the XN, SN~ ON are 
unknown. Such a model was used in investigating other problems, for instance, in [12, 8, 13]. 
In this case it is necessary to connect the point N and the wedge nose by a straight-line 
segment and to superpose a Zhukovskii force on the segment-isolated vortex system so that the 
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resultant force in thesystem would be zero [8, 12, 13]. Taking self-similarity into account, 
this yields 

Vz  N = 2~zr (4.1) 

On the other hand, VzN = dW1/dz for z = ZN, where W~ = W~ + W~2. According to (3.5), 
dW~2/dz = dWN/dz has a simple pole at z = z N. By assumption [i0], the particle velocity at a 
singularity is defined as the regular part of dW:/dz at this point. Therefore 

Vz~v = lira {dW1/dz - -  i• (z - -  Z~v)]}. 
z - > z  N 

Expanding this latter limit by L'Hopital's rule, we obtain 

= - ~  z-~ _ _~,z~-~l(z~_e' i=~z-~N)] / (2s t )"  V~ N %ble ZN ~ i•  t ) / (2ZN) (4.2) 

Separating real and imaginary parts of the expression obtained by equating (4.1) and 
(4.2), we find 

~t l e0Sf0 iN  ) , • = 8 a s ~ v t g t o l x / ( t  -- ~), 

where (olx = ~ (ON - -  a l ) .  
(4.3) 

We find the last unknown 6 from the Kutta--Zhukovskii condition by requiring boundedness 
of dW:/dz as z § 0: 

ON = a I ~- c for a l  < a~, ON = 2rt -- u s -- c 

t l 
for cz 1 > as ,  where c - -  ~ - a r c s i n - -  

* 2V~-" 
(4.4) 

According to (3.5), the velocity potential of the vortex flow has the form 

2~,~. ~ k  - C • s N , i n  2 r  - -  2s s~v s i n  O)IN 0s 0) 1 

~12 - -  2 ~ I  S z ~  - -  2 S  S N COS 0) 1 COS (01N -~ S N COS 2 0 ~ I N  (4.5) 

We find the pressure At= by substituting (4.5) into (2.4). 

Computations using (3.3)-(3.5), (3.10), (4.3)-(4.5), and represented in Fig. 3, quali- 
tatively illustrate the influence of vortex formation on the pressure distribution near the 
wedge nose on the face OA (Fig. 3a) and on the face OD (Fig. 3b). Curves 1-4 in Fig. 3 are 
respectively calculated by using the linear; the binomial outer, taking account of vortex 
formation (X < 2/3); monomial inner for Mo = 0.i; and monomial composite for Mo = 0.i so- 
lutions. The difference, in principle, between the linear and nonlinear distributions is 
observed. 

Let us note that the quantity T determined in (3.9) and entering into the additional 
term of the acoustic expansion (3.11) (see (3.13)), takes on the value T N in the case of a 
point vortex model 

T= = (•  s~ sin ohx.  (4.6) 

Let us also note that the relationship to determine • sl, el, that follows from the 
Kutta-Zhukovskii condition for WI with W11 and W12 determined in (3.4) and (3.6), has the 

l 

form ~l= (%--1) Js~sin~Izd• It goes over into (4.4) upon replacement of the sheet by a 
O 

point vortex. 

5. In the nonsymmetric case, when the movement is accompanied by the origination of a 
vortex, it follows from (3.11) that it is necessary to induce an addition to the process 
performed in [4] to construct nonlinear solutions in the neighborhood of the wave boundary 
ABCD (see Fig. i) o 
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Let us illustrate this by the example of a shock front BC being propagated in a medium 
at rest. The expansions (3.11) in the neighborhood of BC take the following form as r-+ I, 

I0 -- %i ~ O- -r)V', I0 -- %1 >> (i -- r)V" : 

p = e {d,O ~''~ + 0 (p'~:"-) } + a""/Q,p L'~ + o (o~"~)} + e ~ {(-~, + 1)d~/2 -[- 

o + o = { - 2 4 p W 3  + o + { -20, ,o%/3 + 

-i. 0 (9'~"~-)} -i- e e { - -  (y + ~)d]p, '2 + 0 (9a>')} -}- o (ee, x = ) ,  P = ~_ _ r, 

Q ,  --: - -  2a ~--")~ (k " -  l) r cos c%. d z ( o ) = k  s i n %  c t g ~  0 - - T - -  

--c~'~: v 0---~ +% ~Fg)- 

N e a r  BC we i n t r o d u c e  t h e  i n n e r  v a r i a b l e s  a c c o r d i n g  t o  ( 5 . 1 ) :  

r = i - -  ~'-'d~8. P 2e~-d~ {Uq (8, O) + e ~~ (6, 0) -+- 

+ a~I:,(6, o) + . . .  }/(,~, +~.), 

/ = --2e~d~ {G, (8 .0 )  q ~" x ' - ' G *  (6 ,0 )  + sG 5 ((% 0) + . . .  ] / ( ?  -{- ~). 

(5 .1)  

(5 .2)  

The solutions of the eqoatiens H4, Ga are presented in [4]: 

Ff., = (~ -~- bl[). q ,  Ga , 6'c~ + 2[[ba/  ( o q )  -i- c2. b = (I _L 6c,) *,'2. (5 .3)  

The equations for ~*, G* and their solutions have the form 

N* = G~, 2 (1I~ -,'- 8) IIa* -}- (21]a6 -- l )  I1" = 0; ( 5 . 4 )  

11" = eka(l + H b T ' b .  (7" = 2J;:a e f i ( { +  Hb)a/(3cO q- k 4, e = e x p  (I ) .  (5 .5)  

Here c~ c2, k3, k~ are arbitrary functions of 0, and H = • I. 

The equations for 95, Gs agree outwardly with (5.4). 

By merging the expansions (3.11) and (5.2) at the level 

( )~$l k2+z " ;..,+i~ k. ( ~/~,s z>~2+a~o%2 

we obtain 

c I =- ,i/(7 -'- I) z, l /  s ign (d~), /,:,e si?4~ (d,) O. / (qdx )  (5 .6)  

by 
The arbitrary functions and constants in the inner solutions (5.3) and 

satisfying the boundary conditions on the shock front 

6 --  6 ,  = 80 + ~2-16" + e61 + . . . .  

(5~ are found 

(5,7) 
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Using (5.2) and (5.7) in the exact conditions, we obtain 

ri~(8o) = --2~o, G~(8o) = 0; 

8*YI~ (80) -~ l-I* (80) = - -28  ~:, d~8*'II~ (80) § 4d~ 18"II~ (8o)--)- G* (8o)] = 0 

(5.8) 

(5.9) 

(the prime denotes the derivative with respect to 0). 

Satisfying (5.8), we find ca, ~o, and satisfying (5.9) we find k~, ~* (this can be done 
only for H = I, i.e., for d~ > 0) 

= = = 

= H = ( 5 . 1 0 )  

It can be seen that the formulas for the highest terms of the expansions (5.2) and (5.7) agree 
with those obtained in [4]. Formulas (5.5), (5.6), (5.10) for the next terms in the ex- 
pansions (5.2), (5.7) permit estimation of the influence of vortex formation on the flow 
parameters near BC. 

The vortex formation is taken into account analogously in the valid solutions near the 
fronts of the weak lines of discontinuity AB and CD. Here c2 = k~ = 0, H = sign(dl) = --i 
in (5.5) and (5.6). 

Let us note that the boundary value problem for the neighborhood of the triple point 
B, that is formulated in [4], does not change if vortex formation is taken into account since 
we have H* ~ dli0 -- 0BI as le - OBI § 0 from (5.5) and (5.6) and that the inner expansions 
(5.2) are regular according to (5.2)-(5.7) and (5.10). 

6. In addition to the results of [4], let us note the interesting fact from the physical 
viewpoint: nonsymmetric movement of the wedge at low velocity is accompanied, for certain 
values of the angles ~I, ~2, by the origination of a hanging shock, going from the wedge face 
and forming a smaller angle with the axis OX (the face OD in Fig. ic). 

To prove this, let us consider the quantity H = sign(dl) by assuming a~ ~2 for defin- 
iteness. According to Sec, 5) it must be proved that H = 1 at the point D and in some 
neighborhood. An analysis of d~ from (5.1) shows that for 0 = 0 D = 2~ -- ~2 the quantity H is 
sign[sin ~i • sin2(%~/4) -- sin ~2 cos 2 (%~/4)] at the point D. Therefore, a hanging shock 
DG occurs near the face OD (G is a certain point on the front DC at which the shock degener- 
ates into a line of weak discontinuity) if the initial data of the problem ~i, ~2 belong to 
the domain A(~z, ~2), defined by the relationship sin ~2 sin 2 (~/4) > sin ~= cos 2 (%~/4). 
In the plane (~ + ~=)/~, ~=, the domain A lies below the curve displayed in Fig. 4a (let 
us note that if ~i = ~2, H = --i for e C < 0~J~0D while the front CD is always entirely a line 
of weak discontinuity), 

The location and intensity of the shock DG and the parameters behind it can be determined 
by known formulas [4]. Let us note that the maximum wave intensity is achieved at the point 
D. 

It is interesting that as a~ changes for a fixed a= a qualitative change is observed in 
the pressure diagram along the face OD. This is illustrated by Fig. 4b, where computations of 
the pressure P/Mo along the faces OA, OD are represented (the upper and lower parts of the 
curves, respectively), which have been executed for ~2 = 15 ~ and ~i = 15; 30; 60; 75 ~ . When 
the pressure along OD drops monotonically (~ = 75~ we have a mode with the formation of 
the hanging shock DG according to Fig. 4a. 

7. In conclusion, let us examine the case not investigated in [1-4] of low velocity 
(Mo <<i) movement of a concave aperture angle 2~ = ~i + ~a(2~ > ~, ~i~2, ~ < ~). In 
this case (Fig. 5), reflection of the plane shocks from each other occurs, and if 4~ > 3~, 
from the faces of the angle also. The nature of the interference, i.e., the quantity of 
front reflections from each other and from the faces, and the magnitude of the parameters in 
the domains of piecewise-constant values of P depend on Mo, 2~ and the relationship between 
~, ~ and are successively determined by the solution of problems on the collision of plane 
shocks of different intensity and on shock reflection from a wall [14]. 
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It can be noted that as ~ grows the quantity of reflections increases; here one of the 
situations displayed in Figs. 5a and b is realized alternately in the neighborhood of the 
wave boundary of the perturbation domain. In a linear approximation, the variation intervals 
2a corresponding to the different interference patterns are determined by the relationship 

( t  + 2n)~/(~. + n) < 2~z < ( 3  + 2n)~/(2  + n), n = O, ~i, 2, .. .o (7.1) 

For n = 0, 2, 4, ... (n % is the quantity of shock reflections from the faces) the 
situation shown in Fig. 5a is realized in the neighborhood of the wave boundary, and the 
pressure in the perturbation domain is determined in the symmetric and nonsymmetric cases 
(the letters s and n in the subscripts) by the formulas 

p~l) = s in  a 1 (1 + n -t- IO,  P~n 1) = (1 + n/2)  s in a 1 + (n/2)  s in a2 ,-b i2,  

n = 0 , 2 , 4 , . . . ,  

f2 = 18 - -  [4,  I~ = 13 s in  a~ - -  I4  s in  a l ,  I8 = I { ( # ' ,  %(0 - -  r O, a, - -  2 ~ / 2 } ,  

I~ = I{c~z, X(O - -  aO, 2~/2}  

(7.2) 

(the function I is defined by the relationship (1.4)). 

For n = i, 3, 4, ... (n + 1)/2 ~ is the quantity of shock reflections from each other), 
the situation in the neighborhood of the wave boundary is shown in Fig. 5b, and the pressure 
in the perturbation domain is determined by the formulas 

p(1) , p(1) s i n a l ( 2 + n + I O ,  - n  = [ ( n + g ) s i n ~ l +  ( n ~ ! ) s i n a ~ ] / 2 + I ~ ,  n = t ,  3 , 5 ,  ( 7 , 3 )  
S ~ . . . .  

It is interesting that no significant increase in pressure is observed in the pertur- 
bation domain as the concave angle moves when ~i + a2 § 2~, i.e., when the number of weak 
shock reflections from each other and from the faces of the angle increases. In fact, it can 
be seen from (7.1)-(7.3) that as ~i + ~2 § 2~ (n large) P § ~Mo/2 in a linear approximation~ 
Let us note, for comparison, that as a convex angle moves at low ve!ocity~ P~Mo in the 
perturbation domain in conformity with [4]. 

Let us establish the nonlinear singularities of the problem in the case of low values 
of n. In conformity with (7.2) and (7.3), as r § i outside the neighborhoods of the triple 
points Bk, Ck (k = i, 2) 

p(~) = P " ) ( l ,  O) + QpV 2 + O(p37) ,  p = I - r ,  

Q - -  2~ s in  ( ~ / 2 )  { s in  ~2/[cos  ~(0 - a l )  + cos (~n/2) ] - s in ~1/[ cos ~(0 - a 0 - -  cos ( ~ / 2 )  ] }. 

Analyzing the sign of Q as a function of 8, we conclude that the fronts AkBk, C~C2 in 
Fig. 5 are weak shocks, while the fronts B~B2, CkD k are lines of weak discontinuity~ Their 
position and parameters in the domains of large gradients, as well as the parameters in the 
neighborhoods of the triple points Bk, C k can be determined by formulas from [4]~ 

i. 
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SELF-SIMILAR PROBLEMS OF THE DYNAMIC BENDING OF INFINITE 

NONLINEARLY ELASTIC BEAMS 

V. P. Yastrebov UDC 624.07:534.1 

Obtaining the exact solutions of dynamic bending problems for beams whose material is 
not subject to Hooke's law, is fraught with great mathematical difficulties. Approximate 
methods are used in solving such problems. For instance, the dynamic bending of infinite 
nonlinearly elastic beams is investigated in [i] by using series expansions of the solution 
in a variable interval. According to [2, 3], in solving the problem the beam is replaced by 
a chain of stiff sections interconnected by hinges along the length, wherein elastic or 
plastic elements with characteristics averaged over the length of each section are concen- 
trated. 

In this paper an exact solution on the bending of physically nonlinear infinite beams 
subjected to concentrated effects is obtained. The beam material is subject to a power-law 
dependence between the curvature and bending moment. The property of self-similarity of the 
problem [4, 5] is used to obtain this solution. 

I. A homogeneous prismatic beam is considered, whose bending is described by the 
equation 

O~ ~ " mO~ ~ = q(x ,  t ) ,  (1.1) 

where x is a coordinate measured along the beam, t is the time, w is the deflection, M is the 
bending moment, m is the linear mass of the beam, and q(x, t) is the linear load. 

In order to be able to construct a self-similar solution in describing the dependence 
between the beam curvature and the bending moment, the simplest relationship containing the 
minimal number of dimensional quantities must be used. The power-law dependence [6] 

M ---- 7lifo( l#~w/Ox ~ l) ~ s ign  ( 0~o /0x~ ) ,  (1.2) 
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